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Some motivations for hydrologic prediction
Flood forecasting Hydropower, flood protection

Irrigation

Managing natural resources Recreation
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Topics

• Sources of hydrologic forecast skill
• Past and present hydrologic prediction systems.
• Future ensemble hydrologic prediction systems

and technological challenges
– coupling with weather-climate ensembles.
– data and hydrologic data assimilation issues.
– hydrologic ensemble modeling issues.
– verification issues.
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Sources of hydrologic forecast skill for
very small basins, very short leads

• Good weather forecast/nowcast/observations; satellite, radar observations
crucial for improving flash-flood predictions.

• Especially dry, moist, rain-on-snow, or fire-baked soils can exacerbate
flooding.

 

Flash flood in Versilia and
Garfagnana (Apuan Alps,

Tuscany, Italy) 19 June 1996
J. Kerkmann (EUMETSAT)
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Hydrologic predictability, short leads

• Plots of forecast normalized spread
and ensemble mean.

• Synoptic scale events more
predictable than convective-
dominated events.

• More predictability in complex terrain
(not shown).

Normalized Spread          Ensemble Mean

Case
1

Case
2

Case
3

Case
4

Ref: Walser and Schär, J. Hydrology, 2004

Ensemble forecasts for 4
flooding events in Italy.
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Example: 1-2 day lead hydrologic forecast
for a basin in Northern Italy

Skill of hydrologic forecast tied to the skill of the precipitation/temperature forecasts.  Here, all
forecasts missed timing of rainfall event, so subsequent hydrologic forecasts missed event.

Reservoir regulation, hydrologic model may have also had effects.

Source: A meteo-hydrological prediction system based on a multi-model approach for ensemble precipitation forecasting.  Tomasso Diomede et al, ARPA-SIM, Bologna, Italy.

Hydrologic model forced with multi-model weather ensemble data.

?
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Sources of hydrologic skill:
medium basins, medium leads

• Modeling of the land state (snow, soil moisture), observed
precipitation, upstream river conditions can be important.

• Weather-climate forecasts may have beneficial impact, e.g., sudden
warming diminishing snowpack.

1-day
2-day

3-day

4-day

5-day

6-day An n-day hydrologic
forecast in this basin
with its 6-day transit
time requires 6-n
days of observations
and n days of
forecasts.

(Actually, commonly
even longer than 6-n
days of observations
to spin up and tune
hydrology model)
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Sources of hydrologic forecast skill:
large basins, long leads

• Diminishing influence of weather and climate forecasts due to large
errors at longer leads. Small signals from ENSO and such.

• Deviations from climatology largely tied to land state / snowpack.

Ref: Pulwarty and Redmond, BAMS, March 1997

Columbia 
River
Basin



9

Sources of
hydrologic

skill:
long leads

Relationship of runoff at various
leads and parts of North America
to various climate patterns of
variability.

There can be some enhanced
predictability of future runoff 
from the current states of these
patterns.

Not all patterns, nor even 
all phases of a pattern, provide
predictability.

From Maurer et al., Water Resources
Research, 2004, W09306.
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Sources of hydrologic forecast skill:
snow-water equivalent deviations

• Contours: loadings associated
with leading principal component
for runoff in given area.

• Shaded area: grid cells with
relationships of runoff and this
PC.

• Conclusion:  dry ground --> low
runoff in spring season,
snowy/wet ground, high runoff in
spring season. Not surprising.

• Ref: Maurer et al. 2004.
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Sources of hydrologic forecast skill:
snow-water equivalent

• Looking one season ahead,
in western US, low spring
snow cover --> low summer
runoff.  However, high spring
snow cover in central US
Rockies does not necessarily
mean high summer runoff
(presumably because the
melting may have already
occurred)
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Past and present hydrologic
forecast systems

• Example 1: Regression method
• Example 2: US flash-flood warning system.
• Example 3: Ensemble streamflow prediction

in US for seasonal forecasts.
• Example 4: Bangladesh medium-range

probabilistic flood forecast system.
• Example 5: European short-range flood

forecast system for small-medium basins.
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(1) Regression models to
predict streamflow

Columbia 
River
Basin

Example: predicting April maximum streamflow from 
Columbia-basin average 31 March snow-water equivalent
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(2) Flash-flood warning system
• A sample system

(here, the US River
Forecast System) for
flash-flood guidance in
small basins.

ref: Ntkelos et al, J. Hydrometeorology, Oct. 2006
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(2) Flash-flood warning system
• Using geographic

information system
data, a hydrologic
model, and a variety of
land-state conditions,
tables of the time-
averaged amount of
precipitation needed to
cause a flash flood are
tabulated for a small
basin/ For example, if
today’s soil is wet and
there is more than 20
mm/hour * 6 hours, the
basin will flood.
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(2) Flash-flood warning system

• Precipitation estimated
from radar scans is
compared with the
estimated
precipitation rates that
will produce a flood to
determine whether a
warning should be
issued.
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Results used in statistical analysis to produce
forecasts with probabilistic values

Multiple streamflow scenarios with historic
meteorological or forecast weather/climatic data

Time

Fl
ow

Scenario 1

Saved model states
reflect current

conditions

Ensemble of time series of possible
scenarios, commonly weather in past
years, or model forecasts

(3) US ensemble streamflow prediction
(ESP) technique (medium to long leads)

Scenario 2

Scenario 3

©The COMET Program/Kevin Werner

Hydrologic
forecast model
using initial
model state and
atmospheric
ensemble
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(4) Bangladesh flood forecast system

Tom Hopson and Peter Webster’s ensemble-
based flood forecast system using ECMWF
forecast data.  Bangladesh is very flat country,
prone to flooding.

Ref: Hopson and Webster, 2008, in review.

black = observed, red=ensemble
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(5) Short-term flood forecasting with hydrologic
model driven by local-area ensemble forecasts

• COSMO-LEPS limited-area ensemble driving hydrologic forecast model.

At the start of this flood
event, driving the
hydrologic model with a
deterministic forecast
produced non-record
flood forecasts.  Some of
the ensemble members
did produce record
flooding, as was observed.

Verbunt et al., August 2007 J. Hydrometeorology
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Fl
ow

Time

Deficiencies of many 1st-generation
coupled hydrologic forecast systems

Future

Now

Past

©The COMET Program

Soil moisture, snow
cover, streamflow are not
known perfectly at all
locations. What is their
uncertainty? How do errors
spatially co-vary?

A hydrologic forecast model is run
during this time, keeping track of
streamflow changes. Such models are far
from perfect, sources of model error may
not be accounted for.

Ensembles of atmospheric
information driving hydrologic
system may be biased, may
not represent all sources
of forecast uncertainty, may
not have needed spatial detail
if supplied from numerical
model(s).  For long-lead
simulations, samples of
past years may not represent
changing climate.
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“HEPEX”

an
international,
cooperative
project to
advance

ensemble
hydrologic
predictions
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HEPEX’s
envisioned

“Ensemble
Hydrological
Prediction
System”
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Use ensembles
of statistically adjusted

weather / climate forecasts
to provide

samples of future
atmospheric states

Important properties:
(1) appropriately skillful

at short leads
(2) representative of this year’s
climate if forecasts extend to

longer leads
(3) calibrated data has

biases removed, correct
spatial covariances.
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Develop an
ensemble of initial

land / snow/ streamflow
states consistent with

the observational data,
with appropriate spread
and error covariances.
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Input the weather-climate
ensembles and land / snow

/ streamflow ensembles
into hydrologic forecast
model(s), with multiple

parameters or stochastic
formulations to account
for model uncertainty.
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Statistically adjust the
streamflow forecasts,

mitigating the remaining
biases/spread issues, and
tailoring the products to the
formats most useful to the

customers.
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Monitor the forecasts,
monitor the users’ issues,

and refine the process.
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Probabilistic systems can be developed
for flash flood warnings, also

proposed revision
of the flash-flood
warning system
discussed earlier.

ref: Ntkelos et al, J. Hydrometeorology, Oct. 2006
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HEPEX idea, again.

Nice in concept.

 (1) What is the state of
development of such a

system?

(2) What are the
technological hurdles
in the way of making

these sorts of systems
really well calibrated

and useful to decision
makers?
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Generating calibrated
weather-climate

ensembles
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Climate forecasts

Simple: pre-adjustment system

Weather forecasts

Historical
temperatures

and precipitation

Pre-
adjustment

system

Adjusted
temperatures

and precipitation

c/o Kevin Werner, NOAA/NWS, and COMET
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Pre-adjustment method

Time

Te
m

pe
ra

tu
re

Temperature Ensemble

Adjusted Temperature ensemble
based on a CPC “warm” probability
shift.
Additive adjustment

Time

Pr
ec

ip
ita

tio
n

Precipitation Ensemble

Adjusted Precipitation ensemble
based on a CPC “wet” probability
shift
Multiplicative adjustment

c/o Kevin Werner, NOAA/NWS, and COMET
Coarse model-forecast data are not downscaled,
i.e, adjusted to have correct space-time variability.
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Dealing with ensemble forecast deficiencies: analogs using reforecasts

On the left are old forecasts
similar to today’s ensemble-
mean forecast.  For feeding
ensemble streamflow model,
form an ensemble from 
the accompanying
analyzed weather on the
right-hand side.

Hamill and Whitaker, Nov. 2006 MWR.
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Dealing with ensemble forecast deficiencies: analogs using reforecasts

On the left are old forecasts
similar to today’s ensemble-
mean forecast.  For feeding
ensemble streamflow model,
form an ensemble from 
the accompanying
analyzed weather on the
right-hand side.
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Develop an
ensemble of initial

land / snow / soil moisture /
streamflow states
consistent with the
observational data,

with appropriate spread
and error covariances.
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Example: probabilistic quantitative
precipitation estimation in complex terrain

• Would like to define a gridded
ensemble of possible precipitation
analyses in a region.  This would
provide forcings for a land-surface
analysis.

• Ensemble should have the right
uncertainty (spread, spatial
covariances).

• Proposed solution:
(1) Compute climatological CDF using
past observations.  Use this CDF to
define transformation to Gaussian

(2)Using today’s available
observations (dots), estimate
conditional CDF of precipitation
through regression analysis.
(3) Generate ensembles from
correlated random fields to sample
from the gridded precipitation CDFs.

ref: Clark and Slater, Feb. 2006 J. Hydrometeorology. [more]
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• At each grid point, perform
weighted regression based
on factors such as distance,
similarity in elevation.
Precipitation data is
converted to normal
distributions.

• Shown here: observations,
regression-estimated POP,
and estimated normalized
precipitation amount for
three different days, with the
right-hand column
representing the mean of the
CDF in normalized
coordinates appropriate to
each grid point.  Not shown:
an estimate of the analysis
error in Z-space.

From stations to POPs
and normalized

precipitation amount.

Observations      Estimated POP  Estimated Precipitation
        in Z-space

C
as

e 
1

C
as

e 
2

C
as

e 
3
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Generating ensembles from correlated random fields
to sample from the gridded precipitation CDFs.

1. Construct spatially correlated fields of random numbers

2. Use the cumulative probability that corresponds to the
random deviate to extract values from the estimated
CDFs at each grid cell

Rel?
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Land-surface model and satellite data
in hydrologic data assimilation

• Use of land-surface model (LSM), satellite data
desirable because in-situ measurements
relatively rare.

• LSM: energy-balance model forced by observed
temperature, precipitation; predicts snow, soil
moisture

• Satellite: microwave data most commonly used;
however, retrievals of soil moisture biased,
complicated by estimates of surface emissivity.

• Here, CLSM (NASA catchment land-surface
model) and SMMR (microwave satellite
estimates) are compared against global soil
moisture databank (GSMDB). Different symbols
for different locations. Note large bias of both
satellite, LSM relative to observations.

Ref: Reichle et al., J. Hydrometeorology,  2004.
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Input the weather-climate
ensembles and land / snow

/ streamflow ensembles
into hydrologic forecast
model(s), with multiple

parameters or stochastic
formulations to account
for model uncertainty.

Note: in some systems,the hydrologic forecast
model is simply some “routing” model.  In

others it may be a complicated land-surface
model coupled with routing model.  In the latter

case, forecast information from the
hydrological forecast model will be input back

into the hydrologic data assimilator.
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Hydrologic forecast basics
• Infiltration happens when the precipitation filters into the

ground; some of which may be recovered by plant roots and
be transpired. If enough infiltration then water may penetrate
all the way down to the water table. The water table is the
top layer of saturated ground that can be found across the
planet. In places where the water table intercepts the land
surface, it is manifested as wetlands, lakes and rivers. The
water found below the water table is called groundwater. If
there has not been any rainfall for several days the river flows
are sustained by drainage from the groundwater reservoir
(baseflow); these flows will gradually decrease until the
groundwater levels drop below the land surface.

• Surface runoff is when precipitation moves along the surface
of the ground when either the ground can no longer absorb
the water, or the ground cannot absorb the water fast
enough. The water flows (via gravity) along the surface until it
finds its way into a stream, river, lake, or ocean. Surface
runoff causes the stream to rise quickly after heavy rains
because it is the fastest way water can reach a river or
stream, much faster than through infiltration.

• To be able to forecast the amount of water flowing through a
certain point along a river, the forecaster breaks the flow
down into three components: (1) Baseflow: the amount of
water coming from groundwater. (2) Runoff: the amount of
water coming from surface runoff. (3) Routed Flow: the
amount of water coming from upstream areas.

Ref: http://www.srh.noaa.gov/abrfc/fcstmethods.shtml



42

Lumped vs distributed models
• Lumped: usually empirically based.

– Watershed represented with uniform characteristics (Precip(avg), Slope(avg), Soils(avg), …)
– Area runoff “signature” (unit hydrograph) and regression relationships commonly used
– Predict flow distribution at watershed outlet
– “When no spatial variability is taken into account and when the channel reach or reservoir is

considered as a black box, the routing procedure is referred to as lumped routing.”
– Vertical transport: collection of slabs parameters controlling vertical water movement

• Distributed: usually “physically based”
– Spatial variability within watershed accounted for (P(x,y), S(x,y), Soils(x,y), …)
– Overland flow and channel routing represented with more spatial detail
– Channel routing: translation of runoff hydrograph through channel reaches; route and combine

at junctions
– Diffusion equations for vertical water transport
– “Propagation of flood waves in a river channel is a gradually varied unsteady process, which is

governed by mass and momentum equations.” Numerical solutions use the kinematic wave
and (sometimes) dynamic wave equations

Refs: http://www.nws.noaa.gov/oh/hrl/distmodel/victor.ppt and
Ramirez, J. A., 2000: Prediction and Modeling of Flood Hydrology and Hydraulics Chapter 11, Inland Flood Hazards: Human, Riparian, and Aquatic Communities

Lumped Distributed
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Lumped model
• Would like to predict flow at downstream gauge based

on flow atmospheric drivers such as “precipitation
excess”

• “Unit hydrograph” commonly adjusted to provide basin
response to a unit pulse of excess precipitation (next
slide)

• A river basin may be modeled as a collection of
“lumped” sub-basins to obtain a semi-distributed
model

downstream 
gauge

blue area: the
watershed: all 
properties in 
this area are treated 
as homogeneous

UH

1

2

3

UH
1

UH
2

UH
3
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“Unit hydrograph”
• A special hydrograph, called the unit

hydrograph, is used to estimate how much
water will be put into a stream by excess
runoff. The unit hydrograph is based on the
basin receiving enough rain in excess of
infiltration to make one unit (cm, inch) of
runoff, uniform over the basin for specified
time period. The unit hydrograph shows how
much of this inch of runoff will go into the
stream in a specific amount of time.

• Linearity is assumed, so…
(1) If, for instance, the runoff is something
other than 1.0 cm, 0.1 cm for example, then
multiply the unit hydrograph value by 0.1 to
find the amount of flow into the stream.
(2) Two separate pulses of rain can be
modeled with the sum of two scaled unit
hydrographs.
(3) Time scale can be tuned lumped basin
characteristics (size, slope, geometry).

SCS Dimensionless UHG Features
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Flow  ratios

Cum. Mass

http://www.weather.gov/iao/InternationalHydrologyCourseCD1/johnson/wmo_2003/lectures/6_uhg_theory.ppt
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Sacramento Soil Moisture Accounting
Model (a “lumped” model)

Ref: National Weather Service River Forecast System Model Calibration briefing by F. Fiedler

Inputs: initial hydrologic
conditions, mean areal
precipitation, temperature,
potential evapotranspiration.

Outputs: estimated
evapotranspiration,
channel inflow.

Lots of model parameters
that control aspects like the
percolation rate.
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Estimating lumped hydrologic model
parameters and their uncertainty

Common approach: Force hydrologic model with “observed”
meteorological conditions and upstream gauge data, tune
model parameters until resulting flow at downstream gauge
reasonably fits observed flow.

Problems / challenges:
   (1) Uncertainties in observed meteorological data accounted
for?
   (2) Why should parameters be considered fixed? Should
they vary temporally, or spatially, or with the model state?
   (3)  Many parameters may need to be estimated.  How does
one simultaneously tune all of them?
   (4)  “Regulated basins” -- without natural streamflows, how
do you calibrate?
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Estimating hydrologic model
parameter uncertainty

This process is repeated
many times over in a 
Monte-Carlo process with
different starting guesses
at the model parameters
and slightly different
initial soil moistures and
streamflow states.

After many years, the
result is a distribution of
parameter estimates.

Ref: Vrugt et al., June 2006
J. Hydrometeorology
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Estimate uncertainty using multiple models?
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Distributed model example:
basin in Oklahoma (central US)

Dynamical equations to model vertical water transport and flow downstream. 
Basin characteristics here estimated with data sources such as GIS data.
Tuning may also be involved.

http://www.weather.gov/ohd/hrl/distmodel/distmod.htm
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Issues with distributed models
(1) Despite conceptual appeal, distributed models are still
not totally “physically based” -- still can require lots of ad-hoc
assumptions, codified in profusion of parameters.

(2) Estimating parameters and their uncertainty for each
sub-basin all that much more complex than for lumped model.
There may not be enough observations  ….  parameter
estimation subject to “statistical overfitting.”

(3) For ensemble applications, require not only high-resolution
databases, but also high-resolution quantification of
uncertainty.  Lots more work to do it “right”
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Statistically adjust the
streamflow forecasts,

mitigating the remaining
biases/spread issues, and
tailoring the products to the
formats most useful to the

customers.
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Statistically adjusting streamflows:
“quantile mapping”

• ensures that CDF of
corrected forecast
consistent with CDF
of observed.

• Many examples in
hydrologic literature,
here for basin in
Iowa.

(no bias correction)
event bias correction
LOWESS regression
quantile mapping

Ref: Hashino et al., 2006, Hydrology 
and Earth System Sciences Discussions
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Understanding and tailoring hydrologic product
for customers.  Example: reservoir rule curves

• Large reservoir operators
largely spill based on rule
curves, with different rules
to follow for dry, average,
wet years.

• Represent compromises
between storage for users
(water supply, hydropower)
and anticipated streamflow.

• Radically different
streamflow forecasts from
climatology may cause
reservoir operator to follow
a different rule curve.

• Possible product: translate
ensemble streamflow
forecasts into ensemble
pool size forecasts.

Ref: “Flood control regional scale
facilities” briefing, US Army Corps of Engineers
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Monitor the forecasts,
monitor the users’ issues,

and refine the process.
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Validation / verification
• Challenges:

– (1) regulated basins.  How to estimate unregulated
flow?

– (2) non-independent observations (today’s &
tomorrow’s streamflows highly correlated, gauge here
and a bit upstream highly correlated)

• → long time series of forecasts to achieve large enough
sample

• → “reforecasts” very helpful.

• Many of the techniques used in atmospheric
ensemble verification are still useful (reliability
diagrams, skill scores, economic value, rank
histograms, etc.)

• A few interesting new verification/display ideas
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Display techniques

from ECMWF Nov 2007 workshop
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Conclusions

• Weather-climate forecast inputs should be
useful for probabilistic streamflow predictions.

• Must appropriately model errors from
– Weather & climate forecasts
– Estimates of land-surface initial conditions
– Hydrologic models

• Need to better understand customers’
decision problems and tailor products to be
helpful in making useful decisions.
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Short-range system in Italy

[back]
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NOAA’s reforecast data set
• “Reforecast” definition: a data set of retrospective numerical forecasts using the same model

as is used to generate real-time forecasts.

• Model:  T62L28 NCEP GFS, circa 1998

• Initial States: NCEP-NCAR Reanalysis II plus 7 +/- bred modes.

• Duration: 15 days runs every day at 00Z from 19781101 to now.
(http://www.cdc.noaa.gov/people/jeffrey.s.whitaker/refcst/week2).

• Data:  Selected fields (winds, hgt, temp on 5 press levels, precip, t2m, u10m, v10m, pwat, prmsl,
rh700, heating).  NCEP/NCAR reanalysis verifying fields included (Web form to download at
http://www.cdc.noaa.gov/reforecast).

• Validation data for this study:  North American Regional Reanalysis (NARR)analyzed
precipitation (Mesinger et al., BAMS, 2006)

• Real-time downscaled probabilistic precipitation forecasts:
http://www.cdc.noaa.gov/reforecast/narr
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Fl
ow

Time

(3) ESP Technique (continued)

Future

Now

Past
Low chance of this
level flow or higher

High chance of this
level flow or higher

Medium chance of
this level flow or
higher

©The COMET Program
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Sacramento Model Structure
E T Demand
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Ref: National Weather Service River Forecast System Model Calibration briefing by F. Fiedler
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Sacramento model
contributions to runoff

Impervious  and Direct Runoff

Surface Runoff

Interflow

Supplemental Baseflow

Primary Baseflow

SAC-SMA Model

Evaporation

Precipitation

Upper
           Zone

Lower

Zone

Pervious Impervious

Ref: National Weather Service River Forecast System Model Calibration briefing by F. Fiedler
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Verification : Reliability
Diagrams

% per category                    95% confidence zone

Ja
nu

ar
y

Ju
ly

Precip > 0.0 (Logistic) Precip. > 12.7mm Precip. > 25.4mm

28.5%

30.5% 2.84%

1.86% 0.27%

0.47%

• Conditional probability that an event  occurred, per category

Clark and Slater (2006) – Journal of Hydrometeorology[Back]
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